Python Data Science Handbook
This website contains the full text of the Python Data Science Handbook by Jake VanderPlas; the content is available on GitHub in the form of Jupyter notebooks.
The text is released under the CC-BY-NC-ND license, and code is released under the MIT license.
If you find this content useful, please consider supporting the work by buying the book!
Table of Contents¶
Preface¶
1. IPython: Beyond Normal Python¶
- Help and Documentation in IPython
- Keyboard Shortcuts in the IPython Shell
- IPython Magic Commands
- Input and Output History
- IPython and Shell Commands
- Errors and Debugging
- Profiling and Timing Code
- More IPython Resources
2. Introduction to NumPy¶
- Understanding Data Types in Python
- The Basics of NumPy Arrays
- Computation on NumPy Arrays: Universal Functions
- Aggregations: Min, Max, and Everything In Between
- Computation on Arrays: Broadcasting
- Comparisons, Masks, and Boolean Logic
- Fancy Indexing
- Sorting Arrays
- Structured Data: NumPy's Structured Arrays
3. Data Manipulation with Pandas¶
- Introducing Pandas Objects
- Data Indexing and Selection
- Operating on Data in Pandas
- Handling Missing Data
- Hierarchical Indexing
- Combining Datasets: Concat and Append
- Combining Datasets: Merge and Join
- Aggregation and Grouping
- Pivot Tables
- Vectorized String Operations
- Working with Time Series
- High-Performance Pandas: eval() and query()
- Further Resources
4. Visualization with Matplotlib¶
- Simple Line Plots
- Simple Scatter Plots
- Visualizing Errors
- Density and Contour Plots
- Histograms, Binnings, and Density
- Customizing Plot Legends
- Customizing Colorbars
- Multiple Subplots
- Text and Annotation
- Customizing Ticks
- Customizing Matplotlib: Configurations and Stylesheets
- Three-Dimensional Plotting in Matplotlib
- Geographic Data with Basemap
- Visualization with Seaborn
- Further Resources
5. Machine Learning¶
- What Is Machine Learning?
- Introducing Scikit-Learn
- Hyperparameters and Model Validation
- Feature Engineering
- In Depth: Naive Bayes Classification
- In Depth: Linear Regression
- In-Depth: Support Vector Machines
- In-Depth: Decision Trees and Random Forests
- In Depth: Principal Component Analysis
- In-Depth: Manifold Learning
- In Depth: k-Means Clustering
- In Depth: Gaussian Mixture Models
- In-Depth: Kernel Density Estimation
- Application: A Face Detection Pipeline
- Further Machine Learning Resources
Appendix: Figure Code¶
© 2012-2017 Jake VanderPlas, license unless otherwise noted. Generated by Pelican.